

# Pressed-in sensor with integrated amplifier

Accuracy: ≤ 2 % depending on installation Output signals: 4...20 mA; 2-wire system, or

0...10 VDC 3-wire system,



# Description

The pressed-in sensor has been developed for applications where deformations caused by external forces are to be measured in existing components. Due to the press-fit method, installation is simple and an existing component is given the properties of a force transducer.

The pressed-in sensor can be used in existing structures from a material thickness of 4 mm and a tensile strength of > 350 N/mm<sup>2</sup>. It is suitable for use in structures with a strain of  $0,1\% \le \varepsilon \le 0,25\%$ . The pressed-in sensor contains an integrated programmable digital amplifier. After fitting the sensor, zero point and sensitivity are set using the tecsis handheld programming unit (EPE01). This makes a standardised mA or V signal available. Depending on the installation, an overall accuracy of < 2% F.S. scale range is achieved.

This pressed-in sensor uses an implanted thin film. Thin film sensors, manufactured using advanced technologies, have all advantages of conventional film strain gauges, but without their considerable disadvantages (temperature response of the adhesive and creep).

The force transducer meets EN 61326 for electromagnetic compatibility (EMC).

## Features

- Implanted thin film
- Corrosion resistant stainless steel design
- Integrated amplifier
- High long-term stability
- High shock and vibration strength
- For dynamic and static measurements
- Good repeatability
- Easy to install

## **Measuring ranges**

• Elongations from  $0,1\% \le \epsilon \le 0,25\%$ 

# Applications

- Hoists, cranes
- Tool approach load machines
- Manufactoring automation
- Machine and plant building
- Container weighing
- Fill level control

tecsis GmbH Carl-Legien Str. 40 D-63073 Offenbach / Main Tel.: +49 69 5806-0

Sales national Fax: +49 69 5806-170 Sales international Fax: +49 69 5806-177 e-Mail: info@tecsis.de Internet: www.tecsis.de

# **Principle of operation**

When a mechanical structure is subjected to a load, its shape changes. If a hole is placed at a suitable position, this also deforms. Under strain the round hole becomes an oval hole. The press-fit sensor deforms in the same way and thus very accurately records the resultant compressive, tensile and shear stresses.



Fig. 1: Installed position of sensor

## Specification

| Model                              | F9303                                                                                |  |  |
|------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Elongation ε                       | $0,1\% \leq \epsilon \leq 0,25\%$                                                    |  |  |
| Limit elongation                   | 150 % ε <sub>nom</sub>                                                               |  |  |
| Combined error                     | ≤± 2 % of F.S                                                                        |  |  |
|                                    | depending on assembly situation                                                      |  |  |
| Hysteresis                         | ≤± 0.5 % of F.S.,                                                                    |  |  |
|                                    | depending on surrounding steel                                                       |  |  |
| Creep, 30 min. at ε <sub>nom</sub> | < 0.5 % of F.S.,                                                                     |  |  |
|                                    | depending on surrounding steel                                                       |  |  |
| Nominal temperature range          | -20 +80°C                                                                            |  |  |
| Service temperature range          | -40 +80°C                                                                            |  |  |
| Storage temperature range          | -40 +85°C                                                                            |  |  |
| Temperature effect - span          | typ. $\pm 0.5$ % of $\epsilon_{nom}$ /10K each one depending on                      |  |  |
| - zero                             | typ. ±0.5 % of ε <sub>nom</sub> /10K material pair                                   |  |  |
| Vibration resistance               | 20g, 100h, 50150 Hz                                                                  |  |  |
| (acc. to DIN EN 60068-2-6)         |                                                                                      |  |  |
| Protection type                    | IP 67                                                                                |  |  |
| (acc. to EN 60529/IEC 529)         |                                                                                      |  |  |
| Noise emission                     | acc. to EN 61326                                                                     |  |  |
| Noise immunity                     | acc. to EN 61326                                                                     |  |  |
| Insulation resistance              | > 5 GΩ / 50 V                                                                        |  |  |
| Electrical protection              | Reverse voltage, overvoltage and short circuit protection                            |  |  |
| Analogue output                    |                                                                                      |  |  |
| - Output signal                    | 4 20 mA; 2-wire;                                                                     |  |  |
|                                    | 0 10 V; 3-wire                                                                       |  |  |
| - Current consumption              | Current output: signal current;                                                      |  |  |
|                                    | Voltage output approx. 8 mA                                                          |  |  |
| - Power requirement                | 10 30 V DC for current output;                                                       |  |  |
| Duradan                            | 14 30 V DC for voltage output $(1000)$                                               |  |  |
| - Buraen                           | $\geq$ (UB-6V) / U.U24 A for current output;                                         |  |  |
| Posponos timo                      | > 10 k12 101 voltage output                                                          |  |  |
| - Response american                | $\geq$ 1 ms (within 10% 90% $\varepsilon_{nom}$ )<br>Circular connector M 12v1 4 min |  |  |
| - Electrical connection            | Circular connector M 12X1, 4-pin                                                     |  |  |
| iviaterial of measuring device     | Stainless steel                                                                      |  |  |

of F.S. = full scale value



### Note alignment of notch during press in process!

## **Electrical connector**

#### 4..20 mA output (2-wire system)





#### 0...10V output (3-wire system)

#### M12x1 round connector, 4 pole



940E04

940E01







#### Pin assignment M12x1 (4 pole)

| Electrical    | 420 mA (2-wire) |           | 010 VDC (3-wire) |           |
|---------------|-----------------|-----------|------------------|-----------|
| connection    | Pin             | Cable end | Pin              | Cable end |
| Supply: (UB+) | 1               | brown     | 1                | brown     |
| Supply: (0V)  | 3               | blue      | 3                | blue      |
| Signal: (+)   | 1               | brown     | 4                | black     |
| Signal: (-)   | 3               | blue      | 3                | blue      |
|               | M12x1 thread    | screen    | M12x1 thread     | screen    |

Modifications reserved

DE **9**44 f